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Abstract
The t-test 15 widely used in hypothesis testing in models of qualitative choice. However, the t-test can sometimes
perform poorly and yield misleading resuits, especially when the sample size is small. This paper analyses the finite
sample size and power properties of the t-test in models with sample selection biases. Three versions of the t-test are
compared with the likelihood ratio and Lagrange multiplier tests, which are asymptotically equivalent to the t-test. The
finite sample problems with the i-iest are shown to be much more serious than in models such as binary choice models,
and it is recommended that the {-test not be used in such models. Powers of the tests are also presented.

1 Introduction

For the single equation hypothesis given by
Hy h(B)=0, the asymplotically eguivalent t-fest and
Wald test are the most widely used tests in hypothesis
testing. The test statistic is calculated as A{R)/
{estimated standard error). However, since the standard
errors are usually calculated from the asympiotic
covariance matrin, the t-test does not behave well in
some models and can sometimes yield misleading
results.  One sach example is the case of 2 nonlinear
hypothesis. Gregory and Veall (1983) compared the
hypotheses 1B, 8,=1 and H; B =1/B,. Although
the two nonlinear hypotheses are mathematically
identical, the t-test based on the second hypothesis was
shown to perform quite poorly. Lafontaine and Whiie
(1986) considered H: ﬁf =1 and showed that the test
statistic can take arbitrary values by appropriate selection
of k.

When the model considered is not the standard
linear regression model, the t-iest may not perform well
gven for a simple lincar hiypothesis, such as the test of
significance of an individual coefficien:. Griffiths et al.
{1987y analysed hypothesis lesting in binary choice
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models and showed that the t-test for the simple
coefficient does not yield the correct size and rejects the
true nuli hypothesis too frequently in finite sampies.

This paper examines the finite sample properties
of the t-test in models with sample selection biases (for
details of the model, see Amemiya (1985)), which are
widely used in various fields of economics such as labour
geonomics., Problems with the t-test are shown to be
much more serious than in models such as binary choice
models, and it is recommended that the t-test should not
be used in such models. First, using the Monte Carlo
techmique, the t-test is compared with the likelihood
ratio and Lagrange multipher tests, which  are
asymptotically equivalent to the t<test.  The performance
of the likelihood ratio test is shown to be far superior to
the t-test under the true null hypothesis. The powers of
the tests are also compared.

2. The Model and its Maximum Likelibood
Estimaior

The model considered in this paper is



1) -yh‘:xi’,im iy,
d;=1(,>0)
yzixxsz[a ., F=1L2.,N,

where 1(s) is an indicator function such that i(s)=11if »
is true and O otherwise. y,; is not observable and only the
signof y,, (i.e. d,) is observable. y,, is observable if and
only if ¥, >0 (ie & =1). u; and u,, are 2jm’mtly normal
with zero means, variances 1 and o3, Tespectively,
and covariance o,,. N is the number of observations.
Heckman's {1976, 1979) two step cstimator is widely
used to estimate the model. However, since Heckman's
two step estimator often performs pootly (see, e.g.,
Nawata (1993,1994), and Nawata and Magase (1996)),
it is sensible to estimate the model by the maximum
likelihood method.  Setting p = 0,,/0,, the log-
likelihood function is given by
&
(2.2) InL®) = ¥ Inf(®
IEH
/(@) = (1 -d)logll - @ )]
+d Jlog B {x1,& + p/o, (v, - x3B) 3 (1 -p7 7

~logo, +logdlo; (v, - xxB)]1

where 6 = (a’.p’ 0, p), and ¢ and @are the
density and distribution functions of the standard normal
distribution, respectively.

Standard methods such as thosc used in the
LIMDEP, STAT, and TSP computer sofiware packages
are incomplete. The problems are:

1. The procedures sometimes do not converge.

2. Owing to the existence of local maxima, the results

may not be correct even if the procedures do converge

{sce Olsen (1982)).

For further details, see Nawata (1995). In this paper, the

maximum likelihood estimator (MLE) § is obtained by

the procedure suggested in Nawata (1994, 1995), which

modifies the method given in Olsen (1982).  The

proceduse is:

i) Choose M, equidistant points from (-1,1). Let
 be the distance between any two poinfs. Let

o =0and calculate a 0¥ ﬁ o and 3 o which

maximise the conditional likelihood function.

Note that these estimators are the Probit MLE

and the least squares estimator using the

¥,;>0 observations in the first and second
equations of (2.1), respectively.

i) Let a_’%, ;’3:\}, and QJ, be the j-th round
estimators. Inmcrease p by dand choose the
initial values of the iteration as the j-th round

estimators &\j, 51, and é\j and calculate the
(j+1)-th round estimators. Since the likelihood
function is a confinucus function, the previous
estimators are comsidered to be in the
neighbourhood of the maximum values.

1ii} Continue (ii) and calculate the estimators up to
the largest values of p determined in (i).

v} In the same way, calculate the estimators from
0 to the smallest value of p .

V) Choose the wvalues which maximise the
likelihood function.

Vi) Choose A7, points in the neighbourhood of the
value of p determined in (v), and repeat the
procedure.

Vii) Determine the final estimators.

3. Monte Carlo Experiments

3.1 The Basic Model and the Nuil Hypothesis

In this section, the performance of the t-test is
evaluated by Monte Carlo experiments. The basic model
for the Monte Carlo experiment is:

G yy= ey + oy vy
d,=1(;>0)
Y= By v Byxy vy, P L2 N

x,, and x,, are independent variables, and u;, and u,,
are jointly normal random variables. They are
determined as:

(32) », = §,

Xy, =0 &+ -mE Y0+ (1 -n),

and
(3.3 u, = €
u, = l0e[me, + (E—E)EZJIW
b= ﬂ/m.

£,; and §,; are independent and uniformly distributed
on (0,20], and €, and €, arc independent standard
normal random variables. p, is the tme correlation
coefficient of u,;, and w,,.
The null hypothesis is given by:

B34 Hyp =0
This hypothesis tests the existence of sample selection

biases and is always important in {his model (1.e. if there
are no sample selection biases, the model can be



cstimated by the Probit MLE and least squares
estimator).
The foliowing items are considered.
1) Sizes and powers of the tests, with © =0.0,0.1, 0.2,
0.3,04.05
i} Effects of the correlation of x, and x,, with
n =0.0,08, 1.0.
iii) Effects of sample sizes, with N =200 and 400.
The true parameter values of «'s and fi'sare:

-1.0,
-10.0,

(3.5) w, =

i

o, = 0.1,
B, = L0,

Since the degree of censoring is close to 50% in many
empirical examples , the degree of censoring is chosen to
be 50%. The MLE is calculated by the scanning method
described ir Section 2, and p is chosen from  {-0.99,
(0.991 with an interval of 0.01 in Step (i}, after which it
is chosen in the neighbourhood of the maximum value
with an interval of 0.001. The number of repetitions is
3000 for each case.

3.2 Test Statistics

The t-test, Likelihood Ratip (LR} lest, and
Lagrange Multiplier (LM} test are evalnated in the
experiments. To compare these tests directly, the t-test
staligtic is squared, so that the asymptotic distributions of
the three tests have the x* distribution with one degree
of freedom, Since the number of observations is af least
200 and the number of unknown parameters is just 6,
differences in the i~ and standard normal distributions
arg ignored. The test statistics for the three tests are
calculated as follows.

1, t-tesy

(3.6) 7 = G2/ 1) -

f/\’("} is the estimated variance of 3, and is obtained
from using the following three different methods.

i) The inverse of the Hessian matrix , -/(8)7,
evaluated at 6 - §, where /(8) = Inl/3800".

1i} The inverse of the sum of the outer products of the
first derivatives of Inf,, J(8)' evaluated at 6 = §,
where J(8) = . &lnf /66 -0lnf,/50 .

i1y 7(6)'J(8) 1(6) ! evaluated at § = § .

The test statistics based on (i), (i) and (i) are denoted
in this paper as rf, tf and f32. An alternative method
of evaluating the asympiotic variances is the inverse of
the information matrix. However, since the likelihood
function is a complicated form, calculation of the
information matrix is quite difficult and is not practical
for this model.
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2. LR Test
(3.7 LR = 2[Inl(@) - InLB)]

where B is the constrained MLE under H,.
3. LM Test

AN Y
o0’ {0600'| 9

(3.8) LM =

evaluated at § = B, the consirained MLE under H,

4. Results of the Monte Carlo Experiments

4.1 Sizes of ihe tests

'The asymptotic distributions of the test statistics
follow the x°distribution with one degree of freedom,
x*(1). The results of the Monte Carlo experiments for
the five test statistics (including tf, t; and t32 for the t-
test) are given in Tables 1 - 6. 90% - 99% denote the
percentiles of the estimated test statistics and the
corresponding % (1) values, Max. denotes the maximum
calculated test statistic.

Table 1. Estimates of the Test Statistics when p, = 0,
n =0, N=200

Test 90% | 95% | 99% | Max.

I 471 | 915 | 3846 | 49256
I 440 | 931 | 4492 | 48103
5 521 | 1012 | 3844 | 47.03

LR 285 | 425 | 747 | 1829

LM 3.01 | 464 | 933 | 3141

(D | 270 3.84 5.02 -

Table 2. Estimates of the Test Statistics when p, - 0,
n = 0,N=400

Test | 90% | 95% | 99% | Max
IS 353 | 495 | 1158 | 49385
£ 324 | 488 | 1216 | 72.56
N 363 | 545 | 1401 | 55.03
LR 285 | 388 | 660 | 14.83
LM 299 | 400 | 723 | 2007




Table 3. Estimates of the Test Statistics when p,= 0,
n = 0.8, N=200

Test 90% 95% 59% Max.
I 5843 | 1236 | 4246 | 4835
I 5337 | 1158 | 4543 4315
I 7098 | 1548 | 5432 | 7458
LR 3.10 4.36 7.15 16.65
LM 1.69 3.41 1648 | 1726

Table 4. Estimates of the Test Statistics when p,= 0,
n = 0.8, N=400

Test 0% 95% 9% Max.

2778 53.69 164.9 7403

i} 2603 | 4893 | 1638 | 68L9
1 3236 | 6059 | 1923 | 9598
LR 2.91 3.97 6.85 11.40
M 2.23 476 19.19 | 2392

Table 5. Estimates of the Test Statistics when p,= 0,
n = 1.0,N=200

Test 90% 95% 99% Max.
i 8671 | 1878 | 7655 | 5866
£ 7870 | 1684 | 8381 | 4004
t 5075 | 9124 | 2451 1620
LR 3.05 437 745 16.13
LM 024 | 051 278 | 3262

Tabic 6. Estimates of the Test Statistics when p,= 0,
n = 1.0, ¥=400

Test 0% 95% 29% Max.
I 4739 | 8157 | 2168 | 1291
I 4482 | 7646 | 2416 1023
I 107.0 | 2265 | 10350 | 33583
IR 273 | 394 | 636 | 1325
LM 0.31 0.63 2.83 168.8

The results of the three different t-tests (r ~ t3 )
are quite similar. However, the distributions of t,
t3 are surprisingly different from ¥*(1), especially when
N is small and 1 is large. They have much heavier tails

than x*(1), the absolute t-values are quite large and
even exceed 10 in some trials, despite the fact that the
null hypothesis is correct. Although the LR test
statistic is excessively iarge its dxstnbutaons are much
closer to x*(1} than are t ~ r3 for all cases. The
distributions of the LA test statistic are close to x*(1)
for cases where 1= 0; however, the LM test statistic
takes negative values in many trials for cases where 1=
0.8 and 1.0. The percentage of trials in which the LAf
test statistic becomes negative is given in the following
table, It can be seen that the situation is particuiarly bad
when nn = 0.8and np = 1.0, even when N = 400

Table 7. Pemeﬁag" of Trials in which the LA/ Test

Statistic is Negative

N n=0 =028 n=10

200 0.0% 32.9% 45.4%

400 0.0% 26.8% 44.7%

Tables 8 and 9 give the sizes of the tests for the
significance levels 5% and 1%, respectively. (Although
the LA test statistic becomes negative for many trials,
the tests arc conducted using the simple rule: "reject the
null hypothesis if the test statistic is larger than the
critical value obtained from the x*(1)distribution”.
Therefore, the reselts of the LA/ test may not be reliable
in these cases.)

The pcrformanccs of the three t-tests are
extremely poor. All of t ~ r3 reject the correct null
hypothesis far foo frequenﬂy, especially for cases
wheren = 0.8 and 1.0. When the significance level is
5%, 1. rejects the null hypothesis 12.1%, 8.2%, 40.3%,
34.2%, 46.3% and 40.7% of the time for (y= 0, N =
2000, (=0, N=400), (n=0.8, N=200), (=08 N
= 400}, (1= 1.0, N=200) and (1 = 1.0, N' = 400); when
the significance level is 1%, the rejection frequencies arc
7.2%, 2.9%, 33.7%, 26 7%, 41.0% and 34.1%.

Although tz seems slightly better than t1 L it
still rejects the nuil hypothesis 11.6%, 7.7%, 37.0%,
31.8%, 44.4% and 38.2% at the 5% significance level,
and 6.9%, 2.8%, 31.3%, 24. 7% 38.8% and 32.6% at the
1% significance level. f rejects the nuii hypothesis
13.4%, 9.4%, 49.6%, 41 4%, 51.3% and 44.7% at the
5% significance level, and 8.1%, 3.3%, 40.6%, 31 7%,
43.7% and 37.1% at the 1% SIgmﬁcance level. Except
for the case where (= 0, N = 400), { 3 15 the worst
among the three t-tests. These results suggest the three
versions of the t-test are unreliabie.

Although the LR test rejects the null too
frequently, the performance of the LR test is much better
than the three t-iests in all cases. The LR test rejects the
null hypothesis 6.0%, 5.2%, 6.6%, 5.4%, 6.5% and
5.2% at the 5% significance level, and 1.5%, 1.0%,
1.3%, 1.2%, 1.5% and 0.9% at the 1% significance
level, which is far superior to the t-tests.



Tabie 8. Sizes of the Tests at the 3% Significance Level
n =0 n =08 n =10

N 200 400 200 400 200 400

>
t 121 | 82% | 403 | 342 | 463 | 407
% % % % %
i
ty 16 | 77% ¢ 370 1 318 | 444§ 382
% % % % %
2
oy 134 | 94% | 486 | 414 | 513 | 447
% % % % %

IR | 6% | 52% | 66% | 5.4% | 65% | 52%

Yo 6.2% 0.6% G.8%

AT 6.9% 5.7% 3.0

Table 9. Sizes of the Tests at the 1% Significance Level
5= 0 7 = 0.8 1= 1.0

200 400 200 4040 200 400

iy 72% § 29% [ 337 | 267 | 410 | 341

% %o % %

t; ] 69% | 28% | 313 | 247 | 388 | 326

Yo %o % %

s

8.1% 33% 40.6 317 437 32.1

% Ya % %o

I

LR 1.5% 1.0% 1.3% 1.2% 1.5% 0.9%

23% Fo1a% ) 26% | 3.6% | 03% | 0.5%
L

Although the performance of the LA test may not be
reliable when m= 0.8 and 1.0, it rejects the pull
hypothesis 6.9%, 5.7%, 4.6%, 6.2%, 0.6% and 0.8% at
the 5% significance fevel, and 2.3%, 1.2%, 2.6%, 3.6%,
0.3% and 0.5% at the 1% significance level.

4.2 Powers of the Tests

In order to evaluate the powers of the tests, the
cases where w=0.1, 0.2, 0.3, 0.4 and 0.5 are considered
in addition to n=10. The powers of the tests at the 5%
significance level are given in Figures 1-6, in which T1
~T3 represent the powers of tlz ~ t;. As before, the
LAd test statistic takes on negalive values i many trials,

When 1= 0, the powers increase rapidly as 7
increases, al  almost the same rate for all tests. The
powers of tf and i‘; are approximately 5% higher
than for the LR and LA tests, for all values of =, and
the powers of the LR and LA/ tests are very similar. The
power of rq is similar to tz and I fer N =200, and
it is about 10% higher than 1‘ _and 1‘2 for N = 400 and
7 x 0.2, (Since the size of 13 isalso closest to 5%, 4
seems best among the three {-iests in this case.)

When n1= 0.8 and 1.0, the powers of the tests
do not increase considerably for small values of w. The
powers of the LR test are about 30~43% lower than for
the t-tests for all values of 7. The powers of the LAS
test are the lowest and do not increase for these cases;
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indeed, the LM test is almosi powerless where 1= 1.0,
Although the powers of r3 are highest and t2 are
lowest among the three t-tests, the differences in the
powers of the three tests are not very large.

5. Conclusion

This paper has examined three versions of the
t<test, LR and LA tests for testing hypotheses in models
with sampie selection biases. The t-test rejects the true
null hypothesis too frequently, especially when the
sample size is small, whereas the LR test performs
much betier than the t-test for all sampie sizes under the
true ruil hypothesis. These results of the paper suggest
that, aithough it is the most widely used test, the t-test
in models with sample selection biases should be
interpreted cautiously.
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Figure 1. Power of the Tests Figure 4. Power of the Tests
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